Thermal Oxidative Studies of Poly(hexafluoropropene Oxide) Fluids

K. J. L. PACIOREK, R. H. KRATZER, J. KAUFMAN, and J. H. NAKAHARA, Ultrasystems, Inc., Irvine, California 92715

Synopsis

Elucidation of mechanisms operative in thermal oxidative degradation of hexafluoropropene oxide derived polyethers and the effect of metals on these processes are reported. Thermal oxidative instability of a commercial fluid, at moderate temperatures (550°F), was found to be due to the presence of \sim 3% of thermooxidatively unstable chains believed to be hydrogen terminated; treatment at 650°F in oxygen volatilized these chains by unzipping. The resultant fluid was unaffected by oxygen at 650°F and by M-50 and Ti(4Al, 4Mn) alloys at 600°F in oxidizing atmospheres. M-50 alloy catalyzed the degradation of the hydrogen-terminated chains below and at 600°F, but after completion of this process did not affect the remainder of the fluid at these temperatures. At 650°F a chain scission process promoted by the metals constituting the alloy, or their oxides or fluorides, came into play. Ti(4Al, 4Mn) alloy in the presence of CF₃COF and COF₂ species, formed via decomposition of the hydrogen-terminated chains, degraded poly(hexafluoropropene oxide) fluids at 550°F by chain scissions.

INTRODUCTION

Poly(hexafluoropropene oxides) of the general formula $C_3F_7[OCF(CF_3)-CF_2]_x OCF(CF_3)X$ (X is F), as represented by the Krytox family of fluids, possess remarkable thermal stability associated with low pour points and low vapor pressures. These properties render these compositions attractive candidates for high-performance hydraulic fluids, oils, and greases. However, their oxidative stability is limited to approximately 550°F, and above this temperature these materials are incompatible with ferrous and titanium alloys. This degradation could be arrested to a degree by addition of phosphines and related compounds.^{1–5} It has been claimed that the fluorine-endcapped materials have an incipient decomposition temperature slightly above 410°C (770°F) and that the presence of oxygen does not accelerate the degradation process.^{6,7} The latter data applied to well-characterized materials wherein the endgroup denoted by X in the above formula was definitely a fluorine atom.

In the absence of information concerning the mechanisms of the reactions these fluids undergo with oxygen and metals, it is difficult, if not impossible, to devise improvements which would prevent these undesirable processes from occurring.

Thus, the objective of this study was to elucidate first the mechanisms involved in the oxidative degradation of poly(hexafluoropropene oxide) fluids at temperatures up to 650°F and then to establish the effects that ferrous alloys and titanium alloys have on the degradation mode of these materials.

PACIOREK ET AL.

EXPERIMENTAL

The sample decomposition tubes and the metal specimen holders were constructed essentially in the same manner as those used in the AFML Micro-O-C test^{2,3} with the exception that the tubes were closed via a 29/42 ground joint adapter with a 0–5 mm Teflon stopcock and 10/30 ground joint for ready attaching of the system to the high-vacuum line. To provide a sufficient supply of oxygen for any oxidation process, these adapters were furthermore equipped with a ~250-ml reservoir. For reproducible centering of the metal specimen holder, a positioner was constructed which held the rod of the specimen holder in the center of the 29/42 ground joint as shown in Figure 1.

To reduce the volume of fluid required for the test, the diameter of the bottom portion of the tube was reduced to 11-12 mm and the metal coupon's size was scaled down from the 3/4 in. O.D., 1/4 in. I.D. used in the above referenced test to 3/8 in. O.D., 1/8 in. I.D. This allowed the use of as little as $6-8 \text{ cm}^3$ of fluid per actual run. For heating of sample tubes in a vertical position, which was necessary in all experiments involving metal specimens, a modified Lindberg heavy-duty box furnace Type 51232 was employed.

Fig. 1. Decomposition tube arrangement.

In a typical experiment the fluid was introduced into the degradation tube which was then evacuated and filled to a known pressure at a known temperature with a selected gas (air, N_2 , or O_2). Inasmuch as the apparatus was calibrated and the fluid volume measured, the quantity of gas thus introduced was exactly known. The degradation tube was then inserted into the preheated box furnace and kept there for a specified period of time; throughout this exposure the temperature was continuously recorded. After removal from the furnace the tube was allowed to cool to room temperature, attached to the high-vacuum line, and opened. The liquid-nitrogen noncondensibles were collected quantitatively, measured, and analyzed by mass spectrometry. The liquid-nitrogen condensibles, which were volatile at room temperature, were measured, weighed, and analyzed by infrared spectroscopy, mass spectrometry, and GC-MS. The fluid residue itself was weighed and subjected to infrared spectral analysis, differential scanning calorimetry (DSC), molecular weight measurement, and viscosity determinations. The tests performed are summarized in Tables I through III whereas the product compilations are given in Tables IV through VI.

In view of possible and actually expected variations in different fluid batches the majority of tests performed utilized a specific batch of poly(hexafluoropropene oxide) fluid, namely, Krytox MLO-71-6, with limited work conducted on other batches to supplement and confirm conclusions reached. The molecular weight of this fluid was found to be 5500 using a Hewlett–Packard osmometer Model 302. The primary standard used was *tris*-perfluoro-*n*-heptyl-*s*-triazine; measurements were conducted in hexafluorobenzene. In all the determinations of the treated fluid, the original Krytox MLO-71-6 sample was used as the standard.

Prior to testing the metal coupons were polished using first Norton No-Fil Durite finishing paper Type 4 220A, followed by open-coat silicon carbide papers Grades 400A and 500A. Subsequently the coupons were washed in Freon 113, dried, weighed, and suspended in the test apparatus. After the completion of a given experiment, the metal coupons were weighed after washing with Freon 113 and drying inside an inert atmosphere chamber.

Oxygen consumption, when applicable, and volatiles production were the primary and quantitative criteria of the degradation extent. The changes in viscosity and molecular weight of the residual fluid together with the metal corrosion characteristics, i.e., appearance and weight loss or gain, provided additional but mainly qualitative data.

RESULTS AND DISCUSSION

Mechanistic Considerations of Volatiles Production

Gumprecht et al.^{6,7} have shown that the thermal decomposition of poly(hexafluoropropene oxide), $C_3F_7[OCF(CF_3)CF_2]_x OCF(CF_3)F$, produces in vacuo as the main products CF_3CF — CF_2 , CF_3COF , and COF_2 . Examining Tables IV and V, it is apparent that the major products were SiF₄ and CO₂ together with some BF₃. No hexafluoropropene was detected under oxidizing conditions, although it was one of the main products observed in the tests conducted in nitrogen atmospheres as shown by run 11 (see Tables I and IV). This instability of fluorinated olefins in the presence of oxygen has been established by studies

		O/C_3F_6O	ratio,	atm/mole	ļ		۱	l	I	I	l	I	ļ		I		1.67	2.25	1.68			nder of the ven sample
		Fluid	consumed,	mg		l	ļ	I	I	ļ	ļ	1	ŀ	I	l	l	560	410	480	I		oule; the remai
d.a	en	le	cts	mg/g ^g	1.3	1.0	0.1	1.0	10.8	8.6	16.3	42.9	53.1	72.6	6.3	73.9	48.1	62.6	54.2	18.8	28.7	sealed amj 1 untreatec 0.
Jvide) Flui	Int I (ante	Tota	produ	mg	13.7	12.3	0.7	11.5	130.6	159.3	338.3	152.3	181.4	238.0	64.7	2141	805.7	780	731.1	252.6	381.1	in a 90-ml ture. ces betweei d to be 480
) onononio	arradordo			mg/g ^f	0.16	0.10	1	1	0.98	0.62	2.46	4.79	5.24	7.56	1	I	5.38	7.15	5.74	1.59	3.08	conducted ed tempera ; if differen 28 was foun
يرابونيمواليين	httevanno.	Oxygen	onsumed	%e	32	22	I	1	100	100	84	27	6.1	8.4	I		31.3	30.8	26.8	7.5	14.4	oyed. st no. 6 was t the denot riscometers c MLO-76-?
TABLE I Thermal Degradation Studies of Po				mg	1.7	1.2	l	ł	11.9	11.6	51.0	17.0	17.9	24.8	I	n.d.	90.0	88.9	77.5	21.4	40.8	6 was empl furnace; tes mple was a semimicrov at of Krytor
				PMM	5500	5500	5500	5500	5500	5500	5500	5600	5600	5600	5500	ł	5500	5500	5000		5200	x MLO-71- sed in the on of the sa n-Manning be 5500; the
	ד וובו ווומו הבפו	Viscosity ^c	change,	%	-0.38	l	ļ	I	+0.80	+0.89	+0.60	+3.70	+5.47	+6.01	+1.02	+2.39	+1.62	+2.63	+1.88	I	+2.51	her tests Kryto les totally encla he liquid porti, F using Cannou 5 was found to
contol Doto for	ובווומו המומ וחו		Duration,	Ъг	24	24	24	216	216	24	24	24	24	216	216	208	24	120	24	24	192	ised. In all otl leaaled ampou in which only t at 100 ± 0.02° ytox MLO-71-6 doyed. oyed.
D-monin	maden		Temp.,	٩	610	540	610	610	610	650	650	650	650	650	650	650	650	650	650	600	600	-76-28 was u lagparatus lapparatus conducted not listed. intreated Kry able. f fluid emplo
				Atm	Air	Air	\mathbf{N}_2	N_2	Air	Air	Air	Air	°2	02	N_2	0_2	0_2	0_2	°2	\mathbf{O}_2	0_2	ytox MLO ere perform d in 438-mi and in 438-mi s, these are veight of u veight of u value ed in mg/g o
		Starting	material	used, g	10.43	11.82	11.33	11.87	12.05	18.59	20.76	3.55	3.42	3.28	10.26	28.96	16.74	12.44	13.49	13.43	13.26	st no. 23 K: nos. $1-5 w$, re performe the measure 0.359 molecular v ent of the o en consum, ucts formed
			Test	no. ^b	1	2	3	4	5	9	7	8	6	10	11	15	19	22	23ª	34A	34B	^a In te ^b Test ^{tests} wei ^c All t ^c All t ^d The ^e Perc ^f Oxyg ^g Prod

1400

PACIOREK ET AL.

Alloy ^{a,b}	/C ₃ F ₆ O Coupon weight	ratio, gain/loss,	m/mole mg/cm ^{2 h}	- + 0.18	2.16 + 0.42	1.53 + 0.42	+ 5.0	1.86 - 6.3	+ 0.6	2.01 + 3.0	1.63 + 0.67	— n.d.	n.d.	n.d.	— n.d.		- + 0.30	e projection, the volume of I fluids and a given sample mployed in tests 28B–28E
resence of M-50.	Fluid 0	consumed,	mg at	1	340	560	I	1580	I	490	690	- Margan	I	1	I	I	1	with a finger-like etween untreated to be 4800. weight of fluid e
ls in the P	le	cts	mg/g ^g	4.0	47.5	64.7	15.4	202	3.7	60.1	7.67	81.2	93.8	191	101	97.4	0.2	equipped erences by was found ïed. The
xide) Fluid	Tots	produ	mg	48.5	576.7	798.3	184.9	2623.5	47.7	774.9	1021.0	1050.4	1143.5	2180.0	997.2	891.8	2.2	LO-76-28 ti diff
oropene O			mg/g ^f	0.74	5.84	6.69	2.27	21.8	ļ	7.36	8.47	9.17	10.7	21.3	11.9	10.7	0.21	employed. apparatus roviscome Krytox M Krytox M
LE II exafluoroj	Oxygen	onsumed	%e	3.1	24.6	28.9	9.6	100	ł	33.3	37.1	42.1	45.2	83.5	40.4	34.0	0.7	71-6 was. 71-6 was. g semimic 0; that of 0; that of 0; that of 15. st no. 15). eight loss
TABL on Studies of Poly(he	•	8	mg	9.0	70.8	82.5	27.3	283.0	ł	94.9	108.5	118.6	130.3	242.9	117.0	97.8	~ 2.0	vtox MLO. ed temper. n-Mannin, i to be 550 i to be 550 s 1.6459 cr s 1.6459 cr s and reple d = fluid w
			MWd	5500	5600	5500	5600	0069	6500	5500	5000	ļ	ļ	ļ	ł	5000	5600	r tests Kr. the denot ing Canno i was foun the rims) i ted at 650 indensible icts forme
l Degradati	Viscosity	change, ^c	%	I	ļ	+ 1.52	+ 1.90	+14.93]	+ 2.98	+ 1.26	n.d.	n.d.	n.d.	n.d.	- 8.13	+ 3.20	all the othe all the othe ± 0.02°F usi k MLO-71-6 k MLO-71-6 the area of was pretros oving the co
for Therms		Duration,	hr	24	24	24	24	216	216	216	24	48	48	48	24	24	24	was used; in on of the sa as 416 ml. cted at 100 sted. ated Kryto: ated Kryto: ated Kryto: ated Kryto: in this test in this test pewise, rem
ental Data		Temp.,	۰F	550	600	650	650	650	650	600	650	650	650	650	650	650	009	LD-76-28 v liquid porti (ca. 12 g) w vere condu were not li of the untre vvailable. g/g of fluid ϵ (both side (both side rformed stu rformed stu
Experim			Atm	0_2	0_2	0_2	0_2	0_2	\mathbf{N}_2	0_2	0_2	0_2	02	0_2	0_2	0_2	0_2	Krytox M only the J nus fluid rements v 5%, these 5%, these 15%, th
	Fluid	used,	80	12.22	12.13	12.33	12.01	12.96	12.80	12.90	12.81	12.93	12.19	11.39	9.86	9.16	9.37	st no. 24 ese tests ratus mi ne measu ne measu nolecula molecula molecula molecula than 0.3 molecula to the en consu ucts forn vttxtox fl Tytox fl Z8A-28] lated us
		Test	no.	12	13	14	16 ⁱ	17	18	21	24a	28Ai	28B	28C	28D	28E	35^{i}	^a In te ^b In th the appa ^c All tl were less ^d The ^e Perco ^f Oxyg ^f Prod ^h The ⁱ The l ^j Tests vas calcu

POLY(HEXAFLUOROPROPENE OXIDE) FLUIDS

1401

	Experi	mental Da	ta for Therr	nal Degrada	tion Studies of	TABLE Poly(hexaflue	III oropropene O	xide) Fluid	in the Presenc	se of Ti(4Al, 4]	Mn) Alloy ^{a,b}	
												Coupon weight
Test	Fluid		Temp.,	Period,	Viscosity		Oxy	gen consum	ed	Total pro	oducts	gain/loss,
no.	used, g	Atm	۰F	hr	change, ^c %	PMM	mg	%e	mg/g ^f	mg	mg/g ^g	mg/cm ^{2 h}
36	11.40	0_2	600	24	-21.6	4900	174.0	60.6	15.3	1617.9	142	-0.17
37	11.02	03	550	24	ľ	5400	18.8	6.5	1.71	183.2	16.6	+0.17
39A ⁱ	12.91	03	550	48	n.d.	n.d.	66.3	23.1	5.14	622.6	48.2	n.d.
39B	12.53	02	550	48	n.d.	n.d.	182.7	63.5	14.6	1824.4	146	n.d.
39C	11.15	02	550	24	-44.8	4200	122.6	42.0	11.0	1236.9	111	-0.68
4 3i	12.23	03	550	24	+1.73	5500	2.4	0.8	0.20	2.9	0.2	0
44j	10.80	02	605	24	+0.38	5500	5.5	1.9	0.51	48.4	4.5	+0.17
^a The fl ^b In the the appar	luid used wa se tests only atus minus t	is Krytox N / the liquic the Krytox	ALO-71-6. I portion of 1 t (ca. 12 g) w	the sample w as 416 ml.	as at the denot	ted temperatu	ıre; the appar	atus used w	as equipped w	ith a finger-lik	te projection,	the volume of
° All th	e measureme	ents were (conducted at	$t\ 100 \pm 0.02^{\circ}$	'F using Canno	n-Manning se	emimicrovisco	ometers; if d	ifferences bet	ween untreate	d fluids and a	a given sample
were less ^d The n	than 0.35%, Jolecular we	these were ight of the	e not listed. E untreated F	črvtox MLO	-71-6 was foun	d to be 5500.						
e Perce	nt of the oxy	rgen availa	ble.									
f Oxyge	in consumed	in mg/g o	f fluid emplo	oyed.								
^g Produ h The a	icts formed i rea of the co	in mg/g of	tluid employ h sidas inchi	yed. Inding the ar	a of the rime)	is 1 7735 cm ²						
ⁱ Tests	39A-39C we	sre perforn	ned by remo	ving the con	densibles and r	eplenishing o	xygen at time	specified.	The weight of	fluid employe	ed in tests 391	3 and 39C was
calculatec j These	l using the e tests were p	xpression: verformed	0.723 × we using Kryto	eight produc x MLO-71-6	ts formed = flu which was pre	iid weight loss treated in oxy	gen at 650°F	for 168 hr.				

1402

PACIOREK ET AL.

	rsc	фр	I	0.08	I	4.07	0.36	0.16			I	Ι	3.7	0.1	I	I	2.7		
	Othe	mg	I	0.01		0.47	0.47	0.25	ł	١	ł	I	2.4	1.2	1	l	6.8	ļ	
:	6	фр	1	I	60.3	23.1	1.1	3.0	۱	!	I]	28.0	ł	I	1	ļ	1	
B	C_{3F}	mg	ł	ł	0.41	2.67	1.5	4.8	ł	ł	ł	ł	18.1	١	ł	ł	ł	ł	
de) Fluids)F	d%b	2.3	20.8	I	1.8		3.9	16.9	0.5	0.4	ł	1.6	13.9	0.4	10.8	36.8	0.3	
ropene Oxi	CF ₃ CC	mg	0.32	2.56	ł	0.21		6.19	57.2	0.81	0.65	ļ	1.05	117.7	3.3	79.2	92.9	1.0	
xafluorop	2	q ₀ b	0.2	1.5		ډ.	ł	ċ	1.0	0.9	0.1	I	ċ	3.3	ł	1.1	10.9	0.1	
of Poly(he	COF	mg	0.03	0.18	1	نې	ļ	÷	3.27	1.38	0.27	ł	ċ	26.9	1	8.0	27.5	0.3	ponolum
radation	_ო	¢%b	ł	ļ	ł	ļ	10.4	7.7	4.2	9.7	8.8	7.4	0.5	9.0	8.4	9.8	4.3	7.0	2 9 0 10 0 D
ermal Deg	BF	mg	ļ				13.6	12.3	14.1	14.8	15.9	17.6	0.33	72.5	65.3	71.6	10.9	26.6	U UI A
ied on Th	8	%b	43.0	37.6	26.5	31.3	43.0	34.8	33.5	32.0	42.8	40.8	24.1	28.1	37.7	35.2	17.5	33.6	tooto Kmu
ucts Obtair	CO	mg	5.88	4.63	0.18	3.61	56.1	55.4	113.2	48.8	T.T.	97.1	15.6	226.3	293.8	257.6	44.3	127.9	n all athan
atile Prod		q%	50.8	37.7	1.5	30.2	37.1	40.7	37.6	50.6	45.9	51.6	33.5	45.4	53.3	42.7	27.2	58.2	i oposti sou
Vol	SiF,	mg	6.95	4.65	0.01	3.49	48.4	64.9	127.1	77.1	83.3	122.7	22.7	366.1	415.3	312.2	68.7	221.7	1 O 76 98
		фр	3.7	2.4	11.8	9.4	8.0	9.0	5.7	6.2	2.1	0.2	7.4	0.1	0.2	0.5	0.6	0.9	V witov M
	СC	mg	0.5	0.3	0.1	1.1	10.5	14.3	19.3	9.4	3.8	0.6	4.8	1.0	1.2	3.1	1.5	3.6	ut no 92
	Test	no.	1	2	က	4	5	9	7	æ	6	10	11	19	22	23a	34A	34B	a In to

TABLE IV

^a In test no. 23 Krytox MLO-76-28 was used; in all other tests Krytox MLO-76-6 was employed. ^b Weight percent of total products. ^c These were mainly olefins and hydrogen terminated C_2 to C_7 fluorinated species.

POLY(HEXAFLUOROPROPENE OXIDE) FLUIDS

1403

	Others	d% gm		3.0 0.4	2.0 0.2		4.0 0.2	4 2.4 5.0	0.3 0.04			 	1	1		0.1 3.0	0.1 4.5			
	$C_{3}F_{6}$	2%	ļ	ļ	ł	ļ	ļ	31.4	1	ļ	ļ	I	ļ	ļ			ż			
		mg	ł	ł	I	·		15.0	I	ł		1	1	1		1	?			
	CF4	q%	I	I	1	0.05	0.01	ĺ]	0.01	Ι	0.05	0.13	0.17	0.45	0.58	ċ			
		mg	I	۱	1	0.1	0.3	۱	١	0.1	1	0.5	1.5	3.8	4.5	5.2	ċ			
	F ₆	q%	İ	١	ł	4.8	4.4	1	1.2	0.5	1	1.4	4.7	5.5	3.9	4.1	ċ			
	ပိ	mg	1	١	I	8.8	115.8	I	9.5	4.1		14.9	53.9	119.3	39.0	36.5	\$			
	COF	фр	30.7	13.2	5.9	0.7	ł	¢.	3.3	ł	2.0	0.8	1.1	0.2	0.8	0.6	è	d.		
	$CF_{3}($	mg	14.9	75.9	46.8	1.3	ļ	ۍ.	27.6		20.9	7.9	12.4	5.2	8.3	5.1	ż	emplove		
	F_2	q%	5.9	3.6	0.7	1.4		ļ	0.7	0.3	0.5	0.2	0.4	0.4	0.3	0.2	ۍ	-6 was		
	3	mg	2.9	20.7	5.7	2.5	1	ł	5.8	2.2	5.6	1.9	4.8	9.3	3.2	1.6	¢.	11.0-71		
	3	d%	ł	6.0	10.6	9.7	6.0	2.3	7.7	7.4	6.8	8.7	11.3	11.4	13.0	13.2	ċ	Krutox N		
,	BF	mg	I	34.3	84.6	18.0	158.6	1.1	63.9	57.7	69.8	91.9	129.2	247.9	129.6	117.9	د.	her tests I		
	2	4%	33.0	34.6	35.6	27.4	32.5	22.2	28.7	36.5	32.5	36.0	40.5	35.2	41.7	32.3	95.5	ll the ot!		
	20	mg	16.0	199.6	284.1	50.7	853.6	10.6	237.3	283.0	331.8	377.8	463.0	766.8	415.6	287.9	2.1	nsed [,] in a		
		ď\$p	28.0	42.1	46.3	54.2	55.8	30.8	57.8	54.6	57.6	52.4	41.5	46.4	38.9	47.8	د.	-28 was		ICLS.
	SiF ₄	mg	13.6	242.5	370.0	100.2	1464.4	14.7	477.2	423.7	588.0	550.9	474.8	1011.2	387.9	426.6	ċ	WI.0-76		total produ
		ďo b	2.4	0.2	0.6	1.8	1.0	8.1	0.5	0.5	0.5	0.4	0.4	0.8	0.9	1.2	c.	8 Kruto		ent or
	CO	mg	1.19	1.31	5.12	3.26	26.8	3.86	4.53	4.15	4.9	4.6	4.1	16.5	9.2	11.0	ċ	at no 26	1.4.1.0.1	int perc
	T_{est}	no.	12	13	14	16	17	18	20	21	24	28A	28B	28C	28D	28E	35	a In te		v wei£

TABLE V trion of Polv(hevafluoronronene ()

1404

PACIOREK ET AL.

		rsd	9%	1	I	2.4	1.7	5.2	I	6.8	0.7
		Othe	mg	ł	1	14.7	30.5	64.4	1	3.3	15.3
	Alloyª	4	d%b	1.2	0.7	0.8	2.5	2.5	I	1.9	1.7
	l, 4Mn) ,	CF	mg	19.6	1.2	5.2	45.4	31.3	Ι	0.9	36.8
	of Ti(4A)	_9	d%b	0.8	0.4	12.7	11.9	14.0	ł	11.8	14.1
	Presence	C_2F	ßm	13.0	0.7	78.8	217.0	173.1	1	5.7	299.5
	uid in the	OF	%p	3.9	11.9	4.1	2.4	4.1	l	11.6	6.0
	Oxide) Flı	CF ₃ C	mg	63.8	21.8	25.5	44.3	50.2	ļ	5.6	128.7
_	propene	\mathbf{F}_2	g ₀ b	5.4	10.4	5.9	3.6	6.3	I	8.1	4.6
NBLE VI	exafluorc	3	mg	86.7	19.1	36.8	66.1	78.1	I	3.9	98.4
ΤA	f Poly(he		%p	12.6	8.6	8.4	8.0	8.0	I	0.4	9.8
	radation o	BF	mg	203.9	15.8	52.4	145.3	99.3	I	0.2	207.5
	rmal Deg	5	фb	25.6	30.3	29.2	32.3	29.9	56.4	26.4	24.0
	ed on The	CO	mg	413.8	55.5	182.1	589.0	370.0	0.9	12.8	510.2
	s Obtain	4	d%b	50.5	37.7	36.5	37.6	30.0	18.8	30.0	39.0
	le Product	SiF	mg	817.1	69.1	227.1	686.8	370.5	0.3	14.5	830.3
	Volati		d%b	*	1	I	1	ļ	1	3.1	F
		ర	mg	Ţ			I		I	1.5	0.6
		Test	no.	36	37	39A	39B	39C	42	44	46

^a The fluid employed was Krytox ML0-71-6. ^b Weight percent of total products.

° Trace.

^d These were relatively involatile materials which were collected in the -78°C fraction; these consisted of C₃F₇[OCF(CF₃)CF₂]_xOC₂F₆.

1405

conducted on Teflon where in oxygen no tetrafluoroethylene was observed.⁸ The following process could be responsible for hexafluoropropene consumption:

$$CF_3CF = CF_2 \xrightarrow{[0]} CF_3COF + COF_2$$

although it is more likely that in the presence of oxygen the polymer radical unzips directly into CF_3COF and COF_2 , i.e.,

$$\begin{array}{cccc} & & & \\ \hline & & \\ & &$$

The production of CO_2 and SiF_4 is due to the reaction of the primary products, such as COF_2 , with the glass surface:

$$2\text{COF}_2 + \text{SiO}_2 \rightarrow \text{SiF}_4 + 2\text{CO}_2$$

Regarding the fate of CF₃COF, several possibilities exist. Under the existing conditions, COF_2 might be predominantly formed or the originally liberated CF₃COF degrades further via salt-type pyrolysis found to be operative in the case of, e.g., the sodium salt of trifluoroacetic acid:⁹

Another possible path involves hydrolysis followed by degradation:

$$CF_3COF + H_2O \rightarrow CF_3COOH + HF$$

$$CF_3COOH \rightarrow CF_3H + CO_2$$

Since in all the tests only small quantities of CF_3H were found, this process is either relatively unimportant or, more likely, CF_3H once formed is oxidized further. The production of volatile hydrogen-containing fluorocarbons is to be expected inasmuch as these types of products were also encountered in the degradation of perfluoroalkylether substituted heterocycles.^{10,11} Regarding BF₃, this compound is formed in a reaction analogous to that responsible for SiF₄ production.

Based on the above equations, to degrade poly(hexafluoropropene oxide) to CO_2 and SiF_4 requires two atoms or one molecule of oxygen per repeating unit of the polymer. Consequently, the ratio of oxygen consumed per "mole" of hexafluoropropene oxide lost should be equal to 2. In the experiments where this ratio was measured (see Tables I and II), it varied from 1.5 to 2.2. If one considers the difficulty of weighing back accurately the remaining fluid, the agreement with the theoretical value is not as bad as would appear from the observed deviations.

Degradation Studies in the Absence of Metal

Examining the data contained in Table I, several points become apparent: (a) In the absence of oxygen (air), even at 650°F, the extent of degradation as determined by volatiles produced is very low (see test no. 11). (b) In the presence of oxygen (air), the reaction at 540-610°F is relatively limited, at least during the first 24-hr period, as indicated by the oxygen consumed and volatiles produced (tests 2 and 34A). (c) At 650°F the final extent of degradation is more or less reached within the first 24 hr (compare tests 9 and 10); no significant additional consumption of oxygen and volatiles production is observed during the following 192 hr. (d) The rate or rather extent of reaction is not greatly affected by using pure oxygen instead of air (compare tests 8 and 9) as long as the oxygen partial pressure is kept above a certain minimum (compare tests 1 and 34A), i.e., not more than 30% oxygen depletion in air is reached. (A consequence of this finding was that all further experiments were performed in pure oxygen which permitted the use of a relatively small apparatus). (e) The reaction rate is practically independent of the ratio of exposed liquid surface to liquid volume (compare tests 9 and 19). (f) Different batches of Krytox reached different extents of degradation under identical conditions (compare tests 19 and 23). (g) The fluid recovered after all the tests listed exhibited the same infrared spectral characteristics as the starting material. The changes in molecular weight and viscosity were experimentally not significant.

Based on the findings cited above it can be deduced that up to 650° F (the highest temperature employed in this study), Krytox is oxidatively stable. The limited degradation observed at 650° F must be due to an oxidative instability of some weak links or endgroups present in the fluid. The oxidation of these endgroups or at least the initial steps of this reaction must take place in the liquid phase and must therefore be caused by dissolved oxygen. The fact that neither the oxygen partial pressure in the gas phase (to a degree) nor the liquid surface-to-volume ratio do significantly affect the extent of reaction in turn indicates that, at least over the time periods employed, the fluid must contain sufficient oxygen to produce "complete" reaction of these endgroups and that, again within the time intervals studied, consumed dissolved oxygen must be replenished from the gas phase at a rate sufficient to maintain that oxygen concentration.

Inasmuch as the nature of the residual fluid was virtually the same as that of the starting materials (molecular weight, viscosity, infrared spectral characteristics) and a specific constant degree of decomposition (as measured by oxygen consumed and volatiles formed) was reached reproducibly with a given fluid batch, it must be deduced that a certain number of chains had to be hydrogen terminated. These would be oxidatively relatively unstable and, once attacked, would proceed to unzip. In this way only a limited number of volatiles would be formed, which was found to be the case (see Table IV), and once all the "weak" chains were consumed or "burned off," a stable fluid would result: Based on the fluid consumed on prolonged exposure to oxygen at 650°F, the hydrogenterminated chains account for ca. 3.3% of Krytox MLO-71-6. The support of the theory that the weak links or rather endgroups are indeed hydrogen atoms has been provided by collaborative investigations with Air Force Materials Laboratory personnel. The results of this work will be published elsewhere.

Degradation Studies in the Presence of M-50 Alloy

The extent of degradation of Krytox MLO-71-6 in the presence of M-50 ball-bearing alloy coupons in a nonoxidizing atmosphere, e.g., nitrogen, was found to be negligible even at 650°F (see Table II, test 18). It is apparent that degradation in oxygen at 550°F is also not very extensive (compare tests 12 and 18), yet increases by a factor of ~ 10 when the temperature is raised to 600°F (see test 13). The difference between the 600° and 650°F 24-hr treatments in oxygen (tests 13 and 14) is surprisingly small, and the values measured are fairly close to those found at 650°F in oxygen on prolonged heating in the absence of the alloy (compare with tests 10 or 22, Table I). No really significantly increased degree of degradation was noted on heating the fluid in the presence of the M-50 coupon at 600°F in oxygen for 216 hr as compared to a 24-hr period (see tests 13 and 21). This finding would then imply that at 600°F the metal is merely accelerating the rate of the oxidative degradation so that the extent reached at 600°F approaches or equals that found at 650°F under identical conditions but in the absence of metal. It again supports the stipulations advanced in the preceding section that this process must be due to some weak links, most likely hydrogen endgroups.

The actual proof of the above theory is the stability of the fluid pretreated at 650°F in oxygen (see test 15, Table I) to M-50 coupon at 600°F in oxygen (see test 35, Table II) as shown by the minimal amounts of oxygen consumed and volatiles evolved in addition to the unchanged appearance of the metal coupon itself.

At 650°F in the presence of M-50 and oxygen the reaction of the "weak links" is supplemented and then exceeded by another process, the rate of which increases with time. This is shown by the test series 28 (see Table II). Each of these tests was conducted for the period of time recorded in Table II. At the end of each period the volatiles were removed, separated into liquid-nitrogen condensibles and noncondensibles, measured, and analyzed. Subsequently, fresh oxygen was introduced and the residual fluid was heated for the next designated period. The quantity of fluid given in test 28A was weighed in, and all the other quantities were calculated based on test 14 using the expression

fluid weight loss (in g) =
$$0.56 \times \frac{\text{total products}}{0.7983} = 0.701 \times \text{total products}$$

Test 28E was the last of the series, and at its conclusion the tube was opened to the atmosphere, the coupon and fluid were weighed, and the latter was subjected to the usual analyses. The results of this test series are better illustrated by the graph given in Figure 2 wherein "corrections" for the "weak link process" have been incorporated, tests 14–19 or test 16 (wherein pretreated fluid was employed) being thus given as the first data point. The cause for the rate decrease after 168 hr is unknown; on the other hand, it may be due to the metal or rather metal salts produced either in the form of the flaked-off "rust" or as the coating on the coupon. The coupon during the total exposure lost 9.3% of its original weight, consequently the bulk of metal was not consumed. It should be stressed that, although viscosity was decreased by 8% (in all the other instances it was increased), no difference could be noted in the residual fluid neither by molecular weight measurement nor by infrared spectral analysis. One can thus deduce that the rate increase observed with time of exposure is not caused by

Fig. 2. Rate of oxygen uptake and product evolution as a function of successive exposures of Krytox MLO-71-6 to oxygen at 650°F in the presence of M-50 coupon. $(\bullet, \blacktriangle)$ Run No. 14.

a change in the fluid but is due to production of active sites or species by the metal which promote scissions to occur, these being then followed by unzipping.

Degradation Studies in the Presence of Ti(4Al, 4Mn) Alloy

The investigations conducted utilizing Ti(4Al, 4Mn) alloy in Krytox MLO-71-6 fluid are summarized in Table III, and the type and quantities of the volatiles liberated are given in Table VI. Comparing the results of these tests with the corresponding experiments performed in the presence of M-50 coupons, it is apparent that the degradation, as indicated by oxygen consumed and volatiles produced, is significantly accelerated by the presence of the titanium alloy. Actually the 24-hr exposure at 600°F is more severe for the fluid than 48 hr at 650°F in the presence of M-50 (compare test 36, Table III, with test 28A, Table II).

In view of the findings generated in the investigations of the M-50 alloy, it was expected (see Table II, tests 13 and 21) that possibly at 550°F the titanium alloy merely accelerates the degradation due to the "active" endgroups (as was found to take place with M-50 at 600°F). However, this does not appear to be the case with the Ti(4Al, 4Mn) alloy, which is evident from tests 37 and 39A-39C (see Table III) and even more so from the graphic presentation in Figure 3. A similar action was observed with M-50 at 650°F (see Fig. 2); however, the operative mechanisms must be different. This is shown by the different types of products formed, namely, the absence of carbon monoxide and hydrogen-terminated fluorocarbons as well as the production of materials of the general formula $C_3F_7[OCF(CF_3)CF_2]_x OC_2F_5$ and C_2F_6 (see Table VI). The reduction in mo-

Fig. 3. Rate of oxygen uptake and product evolution as a function of successive exposures of Krytox MLO-71-6 to oxygen at 550°F in the presence of Ti(4Al, 4 Mn) coupon.

lecular weight of the residual fluid and the drastic decrease of viscosity in conjunction with the production of the compounds of the type just mentioned would tend to show that chain scissions by a fluorinating agent, e.g., AlF₃, do take place. This stipulation is in agreement with the work of Gumprecht⁷ who indicated that the attack by AlF₃ leads to chain scissions and formation of C_2F_5 -terminated materials via the mechanism depicted below:

Of the two fragments A can degrade further without assistance from AlF_3 , whereas B is a lower molecular weight "Krytox" telomer.

Inasmuch as no degradation was observed in the presence of Ti(4Al, 4Mn) alloy in an inert atmosphere even at 600°F (test 45, Table III), it has to be assumed that at that stage AlF_3 is absent and the three metal constituents of the alloy are inactive. On the other hand, it has been shown that even in the absence of metal, Krytox MLO-71-6 undergoes thermal oxidative degradation at temperatures as low as 550°F (test 2, Table I). Consequently, at this temperature AlF_3 is conceivably formed via reaction of, e.g., Al₂O₃ (formed by surface oxidation of the alloy) with the fluid's oxidation products COF_2 and CF_3COF , most likely via the path delineated for SiF_4 production. This type of a process would also explain the rate increase with time (see Fig. 3) since the concentration of AlF_3 would increase as degradation would proceed. The postulation regarding AlF_3 formation and its action is strongly supported by test 43 (Table III) wherein pretreated fluid (i.e., fluid free of the weak endgroups) was employed and where the extent of degradation as measured by volatiles produced, oxygen consumed, and as judged by coupon appearance changes was negligible as compared to test 37, in which the as-received Krytox MLO-71-6 was used. Similar results were obtained in experiment 44, which was conducted in the vicinity of 600°F. Thus, it would seem safe to postulate that at least up to 600°F oxides of the metals present in the Ti(4Al, 4Mn) alloy do not degrade hexafluoropropylene oxidederived telomers, provided these are terminated by a perfluoroalkyl moiety, i.e., compositions of the type $C_3F_7[OCF(CF_3)CF_2]_xOR_f(R_f = C_nF_{2n+1})$.

This investigation was supported by the U.S. Air Force Materials Laboratory under Contract No. F33615-75-C-5201. The authors are indebted to C. E. Snyder and Dr. C. Tamborski for helpful discussions and suggestions.

References

1. C. Tamborski and C. E. Snyder, Synthesis and Use of Perfluoroalkylarylphosphines in High Temperature Fluid Applications, Paper presented at the Third Winter Fluorine Conference, St. Petersburg, Florida, January 1977.

2. C. E. Snyder and R. E. Dolle, ASLE Trans., 19(3), 171 (1976).

3. R. E. Dolle and F. J. Harsacky, New High Temperature Additive Systems for PR-143 Fluids, AFML-TR-65-349, January 1966.

4. R. E. Dolle, High Temperature Corrosion Preventive Additives for Fluorocarbon Polyether Fluids, AFML-TR-67-210, September 1967.

5. G. J. Morris, Interaction Between Perfluoroalkyl Polyether Linear and Cyclic Derivative Fluids and High Temperature Bearing Steels in Oxidation Corrosion Environment, AFML-TR-73-175, November 1973.

6. W. H. Gumprecht, The Preparation and Thermal Behavior of Hexafluoropropylene Epoxide Polymers, Paper presented at the Fourth International Symposium on Fluorine Chemistry, Estes Park, Colorado, July 1967.

7. W. H. Gumprecht, The Preparation, Chemistry, and some Properties of Hexafluoropropylene Epoxide Polymers, Paper presented at the Gordon Fluorine Conference, New Hampshire, 1968.

8. K. L. Paciorek, R. H. Kratzer, and J. Kaufman, J. Polym. Sci., 11, 1465 (1973).

9. J. D. LaZerte, L. J. Hals, T. S. Reid, and G. H. Smith, J. Am. Chem. Soc., 75, 4525 (1953).

10. K. J. L. Paciorek, R. H. Kratzer, J. Kaufman, and R. W. Rosser, J. Fluorine Chem., 6(3), 241 (1975).

11. K. J. L. Paciorek, R. H. Kratzer, J. Kaufman, J. H. Nakahara, R. W. Rosser, and J. A. Parker, J. Fluorine Chem., 10(2), 119 (1977).

Received January 29, 1979